Copied to
clipboard

G = C3×C23.F5order 480 = 25·3·5

Direct product of C3 and C23.F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×C23.F5, C23.(C3×F5), C22.F51C6, C22.5(C6×F5), (C22×C6).1F5, C156(C4.D4), (C22×C30).9C4, Dic5.4(C3×D4), (C22×C10).6C12, (C3×Dic5).43D4, (C22×D5).2C12, C6.37(C22⋊F5), C30.37(C22⋊C4), (C6×Dic5).172C22, C5⋊(C3×C4.D4), (D5×C2×C6).4C4, (C2×C5⋊D4).8C6, (C2×C6).29(C2×F5), (C2×C30).55(C2×C4), (C6×C5⋊D4).17C2, (C3×C22.F5)⋊5C2, (C2×C10).12(C2×C12), C2.11(C3×C22⋊F5), C10.11(C3×C22⋊C4), (C2×Dic5).21(C2×C6), SmallGroup(480,293)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C3×C23.F5
C1C5C10C2×C10C2×Dic5C6×Dic5C3×C22.F5 — C3×C23.F5
C5C10C2×C10 — C3×C23.F5
C1C6C2×C6C22×C6

Generators and relations for C3×C23.F5
 G = < a,b,c,d,e,f | a3=b2=c2=d2=e5=1, f4=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bcd, fcf-1=cd=dc, ce=ec, de=ed, df=fd, fef-1=e3 >

Subgroups: 376 in 92 conjugacy classes, 32 normal (24 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C8, C2×C4, D4, C23, C23, D5, C10, C10, C12, C2×C6, C2×C6, C15, M4(2), C2×D4, Dic5, D10, C2×C10, C2×C10, C24, C2×C12, C3×D4, C22×C6, C22×C6, C3×D5, C30, C30, C4.D4, C5⋊C8, C2×Dic5, C5⋊D4, C22×D5, C22×C10, C3×M4(2), C6×D4, C3×Dic5, C6×D5, C2×C30, C2×C30, C22.F5, C2×C5⋊D4, C3×C4.D4, C3×C5⋊C8, C6×Dic5, C3×C5⋊D4, D5×C2×C6, C22×C30, C23.F5, C3×C22.F5, C6×C5⋊D4, C3×C23.F5
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, F5, C2×C12, C3×D4, C4.D4, C2×F5, C3×C22⋊C4, C3×F5, C22⋊F5, C3×C4.D4, C6×F5, C23.F5, C3×C22⋊F5, C3×C23.F5

Smallest permutation representation of C3×C23.F5
On 120 points
Generators in S120
(1 100 60)(2 101 61)(3 102 62)(4 103 63)(5 104 64)(6 97 57)(7 98 58)(8 99 59)(9 86 46)(10 87 47)(11 88 48)(12 81 41)(13 82 42)(14 83 43)(15 84 44)(16 85 45)(17 90 115)(18 91 116)(19 92 117)(20 93 118)(21 94 119)(22 95 120)(23 96 113)(24 89 114)(25 105 66)(26 106 67)(27 107 68)(28 108 69)(29 109 70)(30 110 71)(31 111 72)(32 112 65)(33 53 74)(34 54 75)(35 55 76)(36 56 77)(37 49 78)(38 50 79)(39 51 80)(40 52 73)
(2 6)(3 7)(10 14)(11 15)(17 21)(20 24)(26 30)(27 31)(35 39)(36 40)(43 47)(44 48)(51 55)(52 56)(57 61)(58 62)(67 71)(68 72)(73 77)(76 80)(83 87)(84 88)(89 93)(90 94)(97 101)(98 102)(106 110)(107 111)(114 118)(115 119)
(2 6)(4 8)(10 14)(12 16)(18 22)(20 24)(26 30)(28 32)(33 37)(35 39)(41 45)(43 47)(49 53)(51 55)(57 61)(59 63)(65 69)(67 71)(74 78)(76 80)(81 85)(83 87)(89 93)(91 95)(97 101)(99 103)(106 110)(108 112)(114 118)(116 120)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)(113 117)(114 118)(115 119)(116 120)
(1 54 46 19 105)(2 20 55 106 47)(3 107 21 48 56)(4 41 108 49 22)(5 50 42 23 109)(6 24 51 110 43)(7 111 17 44 52)(8 45 112 53 18)(9 92 66 100 75)(10 101 93 76 67)(11 77 102 68 94)(12 69 78 95 103)(13 96 70 104 79)(14 97 89 80 71)(15 73 98 72 90)(16 65 74 91 99)(25 60 34 86 117)(26 87 61 118 35)(27 119 88 36 62)(28 37 120 63 81)(29 64 38 82 113)(30 83 57 114 39)(31 115 84 40 58)(32 33 116 59 85)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,100,60)(2,101,61)(3,102,62)(4,103,63)(5,104,64)(6,97,57)(7,98,58)(8,99,59)(9,86,46)(10,87,47)(11,88,48)(12,81,41)(13,82,42)(14,83,43)(15,84,44)(16,85,45)(17,90,115)(18,91,116)(19,92,117)(20,93,118)(21,94,119)(22,95,120)(23,96,113)(24,89,114)(25,105,66)(26,106,67)(27,107,68)(28,108,69)(29,109,70)(30,110,71)(31,111,72)(32,112,65)(33,53,74)(34,54,75)(35,55,76)(36,56,77)(37,49,78)(38,50,79)(39,51,80)(40,52,73), (2,6)(3,7)(10,14)(11,15)(17,21)(20,24)(26,30)(27,31)(35,39)(36,40)(43,47)(44,48)(51,55)(52,56)(57,61)(58,62)(67,71)(68,72)(73,77)(76,80)(83,87)(84,88)(89,93)(90,94)(97,101)(98,102)(106,110)(107,111)(114,118)(115,119), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)(65,69)(67,71)(74,78)(76,80)(81,85)(83,87)(89,93)(91,95)(97,101)(99,103)(106,110)(108,112)(114,118)(116,120), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120), (1,54,46,19,105)(2,20,55,106,47)(3,107,21,48,56)(4,41,108,49,22)(5,50,42,23,109)(6,24,51,110,43)(7,111,17,44,52)(8,45,112,53,18)(9,92,66,100,75)(10,101,93,76,67)(11,77,102,68,94)(12,69,78,95,103)(13,96,70,104,79)(14,97,89,80,71)(15,73,98,72,90)(16,65,74,91,99)(25,60,34,86,117)(26,87,61,118,35)(27,119,88,36,62)(28,37,120,63,81)(29,64,38,82,113)(30,83,57,114,39)(31,115,84,40,58)(32,33,116,59,85), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,100,60)(2,101,61)(3,102,62)(4,103,63)(5,104,64)(6,97,57)(7,98,58)(8,99,59)(9,86,46)(10,87,47)(11,88,48)(12,81,41)(13,82,42)(14,83,43)(15,84,44)(16,85,45)(17,90,115)(18,91,116)(19,92,117)(20,93,118)(21,94,119)(22,95,120)(23,96,113)(24,89,114)(25,105,66)(26,106,67)(27,107,68)(28,108,69)(29,109,70)(30,110,71)(31,111,72)(32,112,65)(33,53,74)(34,54,75)(35,55,76)(36,56,77)(37,49,78)(38,50,79)(39,51,80)(40,52,73), (2,6)(3,7)(10,14)(11,15)(17,21)(20,24)(26,30)(27,31)(35,39)(36,40)(43,47)(44,48)(51,55)(52,56)(57,61)(58,62)(67,71)(68,72)(73,77)(76,80)(83,87)(84,88)(89,93)(90,94)(97,101)(98,102)(106,110)(107,111)(114,118)(115,119), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)(65,69)(67,71)(74,78)(76,80)(81,85)(83,87)(89,93)(91,95)(97,101)(99,103)(106,110)(108,112)(114,118)(116,120), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120), (1,54,46,19,105)(2,20,55,106,47)(3,107,21,48,56)(4,41,108,49,22)(5,50,42,23,109)(6,24,51,110,43)(7,111,17,44,52)(8,45,112,53,18)(9,92,66,100,75)(10,101,93,76,67)(11,77,102,68,94)(12,69,78,95,103)(13,96,70,104,79)(14,97,89,80,71)(15,73,98,72,90)(16,65,74,91,99)(25,60,34,86,117)(26,87,61,118,35)(27,119,88,36,62)(28,37,120,63,81)(29,64,38,82,113)(30,83,57,114,39)(31,115,84,40,58)(32,33,116,59,85), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,100,60),(2,101,61),(3,102,62),(4,103,63),(5,104,64),(6,97,57),(7,98,58),(8,99,59),(9,86,46),(10,87,47),(11,88,48),(12,81,41),(13,82,42),(14,83,43),(15,84,44),(16,85,45),(17,90,115),(18,91,116),(19,92,117),(20,93,118),(21,94,119),(22,95,120),(23,96,113),(24,89,114),(25,105,66),(26,106,67),(27,107,68),(28,108,69),(29,109,70),(30,110,71),(31,111,72),(32,112,65),(33,53,74),(34,54,75),(35,55,76),(36,56,77),(37,49,78),(38,50,79),(39,51,80),(40,52,73)], [(2,6),(3,7),(10,14),(11,15),(17,21),(20,24),(26,30),(27,31),(35,39),(36,40),(43,47),(44,48),(51,55),(52,56),(57,61),(58,62),(67,71),(68,72),(73,77),(76,80),(83,87),(84,88),(89,93),(90,94),(97,101),(98,102),(106,110),(107,111),(114,118),(115,119)], [(2,6),(4,8),(10,14),(12,16),(18,22),(20,24),(26,30),(28,32),(33,37),(35,39),(41,45),(43,47),(49,53),(51,55),(57,61),(59,63),(65,69),(67,71),(74,78),(76,80),(81,85),(83,87),(89,93),(91,95),(97,101),(99,103),(106,110),(108,112),(114,118),(116,120)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112),(113,117),(114,118),(115,119),(116,120)], [(1,54,46,19,105),(2,20,55,106,47),(3,107,21,48,56),(4,41,108,49,22),(5,50,42,23,109),(6,24,51,110,43),(7,111,17,44,52),(8,45,112,53,18),(9,92,66,100,75),(10,101,93,76,67),(11,77,102,68,94),(12,69,78,95,103),(13,96,70,104,79),(14,97,89,80,71),(15,73,98,72,90),(16,65,74,91,99),(25,60,34,86,117),(26,87,61,118,35),(27,119,88,36,62),(28,37,120,63,81),(29,64,38,82,113),(30,83,57,114,39),(31,115,84,40,58),(32,33,116,59,85)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

57 conjugacy classes

class 1 2A2B2C2D3A3B4A4B 5 6A6B6C6D6E6F6G6H8A8B8C8D10A···10G12A12B12C12D15A15B24A···24H30A···30N
order122223344566666666888810···1012121212151524···2430···30
size11242011101041122442020202020204···4101010104420···204···4

57 irreducible representations

dim1111111111224444444444
type++++++++
imageC1C2C2C3C4C4C6C6C12C12D4C3×D4F5C4.D4C2×F5C3×F5C22⋊F5C3×C4.D4C6×F5C23.F5C3×C22⋊F5C3×C23.F5
kernelC3×C23.F5C3×C22.F5C6×C5⋊D4C23.F5D5×C2×C6C22×C30C22.F5C2×C5⋊D4C22×D5C22×C10C3×Dic5Dic5C22×C6C15C2×C6C23C6C5C22C3C2C1
# reps1212224244241112222448

Matrix representation of C3×C23.F5 in GL8(𝔽241)

150000000
015000000
001500000
000150000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
00001000
0000024000
0000021410
000022200240
,
10000000
01000000
00100000
00010000
00001000
00000100
0000237272400
00002221790240
,
10000000
01000000
00100000
00010000
0000240000
0000024000
0000002400
0000000240
,
2401000000
2400100000
2400010000
2400000000
000091000
000009800
000023328870
00001191840205
,
12557882150000
2133185990000
2101561421870000
2631161840000
0000237272390
00002221790239
00001131934214
000025991962

G:=sub<GL(8,GF(241))| [15,0,0,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,222,0,0,0,0,0,240,214,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,240],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,237,222,0,0,0,0,0,1,27,179,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240],[240,240,240,240,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,91,0,233,119,0,0,0,0,0,98,28,184,0,0,0,0,0,0,87,0,0,0,0,0,0,0,0,205],[125,213,210,26,0,0,0,0,57,31,156,3,0,0,0,0,88,85,142,116,0,0,0,0,215,99,187,184,0,0,0,0,0,0,0,0,237,222,113,25,0,0,0,0,27,179,193,99,0,0,0,0,239,0,4,19,0,0,0,0,0,239,214,62] >;

C3×C23.F5 in GAP, Magma, Sage, TeX

C_3\times C_2^3.F_5
% in TeX

G:=Group("C3xC2^3.F5");
// GroupNames label

G:=SmallGroup(480,293);
// by ID

G=gap.SmallGroup(480,293);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-5,84,365,850,136,2524,9414,1595]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^5=1,f^4=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c*d,f*c*f^-1=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^3>;
// generators/relations

׿
×
𝔽